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Abstract: Model selection uncertainty arises when one model is chosen over plausible alternatives.
Representations of prediction uncertainty routinely incorporate uncertainty about parameter estimates
contingent on the choice of a single best model that is used to represent truth. However, classical prediction
intervals routinely fail to incorporate uncertainty about the choice of that model, and as a result are often
optimistically tight. Optimistically tight prediction intervals can lead to overconfident decisions that do not
incorporate sufficient hedging against uncertainty. Bayesian Model Averaging (BMA) provides a simple
means of incorporating model selection uncertainty into statistical inference and prediction. This paper gives
two examples of the application of BMA in activities fundamental to conservation biology; predicting the
spatial distribution of wildlife species, and assessing the risk of decline in populations of threatened species.
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1. INTRODUCTION

Often we seek to make predictions about unknowns
(such as the probability of occurrence or the future
population size of a threatened species) based on a
set of things that are known (such as aspects of the
environment, or the biology of the species). We
seldom know the true relationship between what
we hope to predict and the information at hand, so
we rely on a model to formalise our judgment. A
model will generally comprise two parts. Firstly,
the model will have a structure that is defined by
the choice of the functional relationships,
variables, transformations and interactions.
Secondly, a model will have a set of parameter
estimates that are specific ‘to a given model
structure. For example, Lindenmayer et al. [1990]
modelled the probability of occurrence of Greater
Gliders (y) as a function of forest age (a) and the
number of trees (greater than 0.5m diameter) with
cavities in a given 3 ha cell (n)

logit(y) = In[y/(1-y)] = -0.993+1.106a+0.554n. (1)
The assumptions made by the authors included:

e only the variables ¢ and n influence the
presence or absence of the species;

e a logit link function rather than other
alternatives was suitable; and

e there was additive linearity in the predictor
variables resulting in no transformation of, or
interaction between the predictor variables.

Clearly, there are numerous alternative models that
might result from the combination of possible
assumptions listed above. In practice, the structural
features of the model are often determined by some
data-driven search over the possible models that
could be chosen to represent our judgment about
the relationship of interest. It is usual to make
predictions contingent on the 'best’ model being
'correct’, considering only the uncertainty about the
parameters in the computation of prediction
intervals. This assumption is tenuous given that
errors arising from uncertainty about the structure
of the model are likely to be far worse than those
arising from other sources [Chatfield, 1995].

In ecology, there is often ambiguity about the
processes involved in determining the true value of
the response. In many instances, there are a number
of possible model structures that fit the observed
data almost as well as the chosen ‘best’ structure.
Hence, there is considerable uncertainty about
which model is in fact the best. If plausible
alternative models result in predictions that are
very different from those of the chosen ‘best’
model, there is the risk of ignoring such
alternatives. A more conservative approach might
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be to think of any given model as a sample from an
infinite set of competing models, then use data to
weight or assign a degree of belief to the
competing models. Below, we highlight how model
selection uncertainty is naturally incorporated
within a Bayesian framework using Bayesian
Model Averaging (BMA), [Draper, 1995].

In some instances a small set of competing models
may represent well-defined schools of thought or
‘competing hypotheses regarding a biological

process (section 3). These models might be

adopted as the set of competing models, keeping in
mind that each competing hypothesis might be
plausibly represented by more than one model. In
these truly ‘discrete’ situations, the only
impediment to a simple BMA analysis is the
identification of a coherent scheme for assigning
posterior model probabilities to candidate models.

In many situations, such as multiple regression for
the construction of habitat models (section 2), the
number of candidate variables can be very large
and the number of possible model structures
becomes enormous. In this case, we utilise an
approach developed by Madigan and Raftery
[1994] and refined by Raftery et al. [1996] called
Occam’s window by which we can identify a
subset of parsimonious candidate models that are
supported by the data. This method firstly excludes
models where the ratio of posterior model
probabilities is strongly in favour of one model,
such that the favoured model is greater than twenty
times as likely as the rejected model. Secondly,
where a smaller (nested) model is given greater
support by the data (has a higher posterior
probability) than a larger model, the larger model
is  excluded. Code entitted BIC.GLM
(www.research.att.com/~volinsky/bma.html)
enables execution of this method in Splus, and is
discussed in more detail in Hoeting et al. [1999]
and Raftery et al. [1996].

The following examples are presented to illustrate
the simplicity with which BMA methods can be
applied in standard ecological modelling situations.

2. BMA FOR SPATIAL PREDICTION

This example demonstrates how the single-best-
model approach to habitat modelling can be
extended to the BMA approach, enabling the
incorporation of model selection uncertainty. We
construct habitat models of the Greater Glider
(GG) using the BMA and single-best approaches.
Using new data, we then test the predictive
accuracy and coverage of the 95% prediction
intervals for the models that were developed.

2.1. Background

The GG is an arboreal, folivorous, gliding
marsupial whose distribution extends from central
western Victoria to just north of the tropic of
Capricorn [McKay, 1995]. Being an obligate
hollow nester, it is dependent on old growth forest
characteristics [Lindenmayer et al., 1990]. Cork
and Catling [1996] categorise the bulk of the
studies on arboreal mammals into those pursuing
the hypothesis that the foliar nutrient status of the
forest is the prime determinant of habitat quality
for arboreal mammals [Braithwaite, 1983], and
those that put equal or greater emphasis on
variables related to structural characteristics of the
forest [e.g., Davey, 1989 and Lindenmayer, 1990].
Cork et al. [1994] provide evidence of a
hierarchical process within which forest structural
attributes act as a determinant of GG habitat above
a certain threshold of foliar nutrient. This
hypothesis was supported by the work of Pausas et
al. [1995], and provides us with a basis for
determining a set of candidate predictors for the
probability of occurrence of the GG.

2.2, The Competing Models

Surveys of the presence of owls and gliders were
conducted by Kavanagh and Bamkin [1995] and
Kavanagh [1997] in the Eden region of southern
NSW in 1992 and 1994 respectively. Data from a
total of 187 of the 1992 survey sites were used for
the test data set and data from 219 of the 1994 sites
were used to develop the models.

We compiled a list of candidate predictors based
on the prior habitat analyses discussed above. For
the purpose of model building and testing, it was
necessary that predictors were available as mapped
digital layers in the Eden region that could be
stored and handled in ArcView [ESRI, 1998]. The
variables considered as candidate predictors were
foliar nutrient index, area of old growth within 1
km, the area of old growth where the foliar nutrient
index was greater than 4, terrain position, amounts
of wet forest and rainforest within 300 m, mean
annual rainfall and topographic wetness index.
Some potentially useful variables such as stand
basal area and time since logging or fires were not
available for all survey sites and consequently
could not be included as candidate predictors.

Models were fitted to the data using Splus after
removing correlated variables, and BIC values
were obtained using the BIC.GLM code of Raftery
[1996]. Three models were identified as the
plausible set of competing models using the BMA
approach outlined above
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logit(y)=1.129 - 0.0517 + 0.032F + 0.004W,
logit(y) = 3.047 — 0.045T + 0.031F + 0.078R,
logit(y) = 3.47 - 0.047T + 0.031F;

where y is the probability of presence of a GG, T'is
mean annual temperature, F is the proportion of
old-growth forest within 1km where foliar nutrient
index is greater than 4, W is the wetness index
score for the 100m grid cell, and R is the
proportion of rainforest within a 300m radius. The
posterior probabilities of the three models,
computed as a ratio of model BIC values, were
0.49, 0.28 and 0.23 respectively.

We made predictions for 187 of Kavanagh’s 1992
survey sites using both the single-best model
(model 1 above) and the BMA prediction from all
three competing models. Both sets of predictions
were then compared to the observations from the
1992 survey using Mann-Whitney U statistics
[Pearce and Ferrier, 2000]. Both the single-best
and model averaged predictions performed
reasonably well with Mann-Whitney statistics of
0.81 and 0.82 respectively, where a score of 1
implies perfect discrimination and a score of 0.5
implies predictive discrimination that is no better
than a random guess.

We calculated the HL goodness of fit statistic (é ),
[Hosmer and Lemeshow, 1989] for both the single-
best and BMA predictions at the independent 1992
sites. Single-best and BMA approaches returned

€ values of 5.40 and 7.78 respectively, showing
no substantial evidence of a lack of fit between the
models and the new data (P=0.72 and 0.46).

2.3. Predictive Coverage of Single-Best and
BMA Prediction Intervals

Computation of point-wise prediction intervals for
a single model requires the calculation of the large
sample asymptotic standard error (ASE) [Agresti,
1996]

ASE(p) = \/Var(d) + xZVar(ﬁ) +2xCov(@, B) , (2)

where & represents the model intercept parameter

and S represents a vector of estimated model

coefficients. A pointwise prediction interval can be
computed as

pE1,ASE. 3

Computation of prediction intervals for the BMA
predictions requires the integration of the intervals
for each of the competing models. Buckland et al.
[1997] describe a method that enables the
computation of pointwise ASEs

~ R a = A 2
ASE(p,) =S wivar(pp)+(Bi—p,)> . @
i=l

where w; is the weight assigned to model i, which
is the posterior probability of model i in our
example, var(p;) is the variance of the linear

predictor for model i derived using (2) above, and
p; — P, is the difference between the prediction

from model i and the weighted average prediction
from all R models. The 95% confidence intervals
for predictions to Kavanagh's 1992 survey sites
based on the single-best model were computed
using (2) and (3). The 95% confidence intervals for
model averaged predictions at the same sites were
computed using (3) and (4).

Predictive coverage measures the performance of
prediction intervals according to how often the
intervals for a particular level of prediction contain
the observed proportion of occurrences [Hosmer
and Lemeshow, 1995]. We measured the predictive
coverage of intervals using an approach analogous
to that of the HL-test for goodness of fit.
Observations with similar predictions were
grouped for both the single-best and BMA
predictions. Each group was then assigned an
upper and lower 95% interval that was the average
of the bounds for each prediction within the group.
The number of times that the observed proportions
of presence fell within the 95% interval for
probability of presence was assessed for both
single-best and BMA model predictions. Observed
proportions of presence fell within the BMA
prediction intervals 90% of the time, while the
single-best intervals bounded the observed
proportion of presence 70% of the time. The BMA
interval was closer to the nominal (95%) coverage
than the single best interval.

2.4. Interpretation

In contrast to Draper [1995] and Hoeting et al.
[1999], the single-best model made similar
predictions in terms of discrimination and
calibration to those of the model average. This may
be due in part to the discrete set of competing
models used to derive the averaged predictions or
that the data used to test predictions was collected
in the same general location and using the same
methods as the model building set. However, the
usefulness of predictions can be thought of both in
terms of the proportion of times that the mean
prediction is correct, and how well we estimated
our uncertainty about the future observations. In
the example presented above, the prediction
intervals computed with the BMA approach
exhibited closer to nominal coverage than those
derived from the single-best model approach. This
indicates that even though we were considering a
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small set of competing models, there was still
considerable uncertainty about which model should
be used. ’

3. BMA FOR POPULATION MODELLING

Population models are used in conservation
biology to predict risks of extinction [Burgman et
al., 1993]. Approaches to developing these models
involve choosing an appropriate model and
estimating the parameters for this model. There has
been some consideration of the uncertainty due to
parameter estimates [Taylor, 1995; Ludwig,
1996a], and uncertainty about the choice of the
appropriate model is acknowledged [e.g., Ludwig,
1996a; McCarthy, 1996}. However, the absence of
a recognized method to integrate the predictions of
different models means that a single model is
usually chosen for prediction, despite the fact that
there is considerable uncertainty about whether the
choice is correct. Moreover, in the uncommon
cases where prediction intervals are provided for
PVA models, uncertainty of model choice has not
been incorporated [Ludwig, 1996a]. '

3.1. Methods

In this example, we examine different models for
predicting risks of population decline of the
mountain pygmy possum (Burramys parvus), a
threatened species confined to alpine boulder fields
in southeastern Australia. The species breeds at
one year of age, so a model without age structure
was used. Three different forms of density
dependence were considered, based on those
presented by Burgman et al. [1993, pp. 85-87] for
unstructured populations. These took the form N,
= g,N,, where N, is the population size at time ¢, and
g is the annual expected growth rate. The models
were the Ricker model

g =M (5)
the Hassell and May model

g:= RI(1+aN)y", (6)
and the Maynard-Smith énd Slatkin modei

8= RI(1+(pN)"). @)

Environmental stochasticity was modelled by
drawing the population growth rate in each year
from a gamma distribution with coefficient of
variation v, and mean g. Demographic
stochasticity was modelled by drawing the number
of individuals in the next year, given a particular
expected growth rate, from a Poisson distribution.
The net result of this is that the number of
individuals in the next year is drawn from a
negative binomial distribution [Ludwig, 1996b].
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Data used to fit the models were obtained from
McCarthy and Broome [2000]. The likelihood for
each annual transition was obtained from the
negative binomial distribution [Ludwig, 1996b],
and the overall likelihood was obtained as the
product of these values. For the data given by
McCarthy and Broome ([2000], there are four
different populations. It was assumed that the
maximum growth rate and shape of density
dependence was the same for all populations and
that the scale parameter (b in (5), a in (6), p in (7))
varied between each population depending on the
equilibrium population size (such that g=1).

In the example presented here, predictions were
made for an equilibrium population size of 30, so
these scale parameters were fixed for given values
of the other parameters. Thus, the unknown
parameters were v, and also r in (5), R and ¢ in (6),
and R and ¢ in (7). The prior distributions for the
unknown parameters were determined from the
biology of the species. Given the long-term
(> several thousand year) persistence of the species
in isolated populations, it was assumed that the
maximum population growth rate was greater than
1. Given that each female produces one litter of up
to 4 offspring each year, and assuming an even sex
ratio, the maximum population growth rate was
assumed to be less than 3. The shape parameters (c
in (6), and q in (7)) were assumed to be between 0
and 10 to span a wide range of possible dynamics.
The coefficient of variation (v) was assumed to be
between O and 0.4, which was reasonable given
experience of modelling other organisms. For the
sake of simplicity and to reflect a relative lack of
prior information, uniform prior distributions were
assumed for all the parameters.

Exact solutions for the probability of transition
from one population size to any other population
size in the next year can be obtained from the
probabilities of the negative binomial distribution.
By constructing a matrix of these transition
probabilities, and raising the matrix to the power
corresponding to the number of years of interest,
risks of extinction [Ludwig, 1996b] and the
expected minimum population size [McCarthy and
Thompson in press] within 100 years were
obtained for a small isolated population with an
equilibrium population size of 30 females.

A Monte Carlo procedure outlined by Hilborn and
Mangel [1997, p. 257] was used to calculate the
posterior distributions of the predictions from each
of the models (5)-(7). Bayesian confidence
intervals on the predictions were calculated for
each model separately and also by integrating
across the three models.




3.2. Results

For the small isolated population of Burramys
parvus that we considered, the predicted risks of
population extinction within the néxt 100 years are
uncertain, with the 95% confidence intervals for
the posterior predictions spanning more than 6
orders of magnitude. Despite such wide confidence
intervals, the results in figure 1 demonstrate that
the risk of extinction is likely to be less than 0.01.

Figure 2 shows that the expected minimum
population size is likely to be between about 8 and
17 females. Moreover, the three different models

made similar predictions, with the result that the

average was similar to the individual predictions.
3.3. Inmterpretation

In this example, the confidence intervals for the
predictions of the different models were very
similar, such that the model-averaged predictions
were similar to any one of the predictions for the
individual models. This result occurred because
these three models happened to make similar
predictions, even though they are capable of quite
different dynamics. It is conceivable that other
models would produce different predictions, such
as if an Allee effect or delayed density dependence
was included [Burgman et al., 1993]. In this case,
the BMA would tend to widen the confidence
interval, as was the case for the greater glider
habitat models (above).

The low risk of extinction within 100 years (<0.01)
for such a small population (30 females as the
initial population size) may, at first, seem unlikely.
However, it appears that populations of this
approximate size have persisted for up to 10,000
years [see McCarthy and Broome, 2000]. Thus, the
low risks of extinction appear to be reasonable.

4. CONCLUSIONS

For simplicity, we have highlighted one approach
to incorporating model uncertainty in predictions.
There would be great value in a detailed study that
compared the performance of the various methods
available for treating model uncertainty in an
ecological context. In particular, a thorough
investigation into the value of MCMC, hierarchical
and bootstrap approaches would be beneficial.

Whilst we have not demonstrated that BMA
provides models .that give substantially more
accurate predictions, we -have demonstrated that
BMA provides a simple means for a more
satisfactory treatment of prediction uncertainty
than currently accepted methods. This may present
a case for a compromise between the single-best
model and a model averaging approach where
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point predictions might be derived from the single-
best model and prediction intervals calculated
using model averaged variances.

1.OE+00W
S 1.0E-02 4 +
G + + +
c
5 1.0E-04 1
e °
%5 1.0E061 @ ® [
X
[72]
& 1.0E-08 -
+ + + +
1.0E-10 r T r |
Ricker MSS HM BMA

Figure 1. Risk of extinction within the next 100
years for Burramys parvus predicted by the four
modelling approaches, showing the median
(circles) and 95% confidence limits (crosses).
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Figure 2. Expected minimum population size
within the next 100 years for Burramys parvus
predicted by the four modelling approaches,
showing the median (circles) and 95% confidence
limnits (crosses).
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